Chemical
Engineering
Journal

www.elsevier.com/locate/cej

R AE A
ELSEVIER Chemical Engineering Journal 96 (2003) 133-143

Theoretical analysis of the flow regimes and their characteristics in
vertically flowing gas—solids suspensions
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Abstract

This paper analyses the detailed flow structure characteristics of a vertical, fully developed gas—solids suspension. It is based on
an asymptotic approach to general multiphase flow equations, in the range of low or moderate solids concentrations. Three distinct flow
structures are identified, defining the Similar Profiles, Transition and Dense Phase Flow Regimes, as well as the local mechanism generating
the transitions. The predicted properties of the trends of variation of local flow variables, with overall solids loading are, then, compared
with existing experimental data. The observed wide agreement encourages the use of the theory for the interpretation and the prediction of
the behavior of existing industrial units.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction expected to provide, e.g., a CFB-type flow regime. On the
contrary, Mok attempted a classification of CFB-type flow
The vertical flow of gas—solids suspensions is relevant for regimes in terms of gas velocity and particle loading ranges,
many industrial applications such as pneumatic transport, for a given gas—solids system and a given installation.
Circulating Fluidized Bed (CFB) or Downer reactors. Espe-  Thus, the prediction of flow regimes also requires the pre-
cially for the operation of chemical reactors, the hydrody- liminary identification of the relevant operating variables,
namic characteristics of the flow are of crucial importance which determine the flow characteristics. Especially for the
since, the coming into contact of the phases which controls CFB, which has been approached either through high veloc-
reaction rate is completely dependent on the flow structure of ity fluidization or pneumatic transport, the question required
the gas—solids mixture. The flow structure, in turn, is deter- clarification. In a recent paper Berruti et §] examined
mined by the operating variables of the installation. There- the effect of the operating principle of each particular CFB
fore, the relationship between operating variables and theinstallation on the hydrodynamic characteristics of the flow
resulting flow structure is a central requirement for proper in the riser. They distinguished between Variable Inventory
plant operation. Systems (VIS) and Fixed Inventory Systems (FIS). Roughly
Besides, the flow regime concept is more or less implic- speaking, in the latter case, the overall solids inventory is an
itly associated with an identified flow structure, the charac- operating variable of the process, together with gas velocity,
teristics of which remain invariant over a more or less wide while, in VIS-type operation, the operating parameters are
range of operating parameters. Consequently, there is a longgas velocity and solids circulation rate (or, solids loading of
lasting concern for predicting fluidization regimes and clas- riser flow).
sifying them in terms of particle properties and operating  This work is devoted to a detailed theoretical analysis
parameter ranges. This preoccupation is traceable througof the flow structures and flow regimes expected to occur
scientific and technical literature, with several regime di- in a vertical, fully developed suspension flow, at a constant
agrams published, e.g., by Zeft], Reh[2], Yerushalmi gas superficial velocity, when the solids loading is var-
et al.[3], Matsen[4], Grace[5], Mok et al.[6,7]. Unlike the ied, regardless of the means (varying solids inventory or,
latter, the first five diagrams allow the determination of the circulation rate) used to adjust solids concentration. Fully
conditions under which a given gas—particle system can bedeveloped flow and its characteristics are relevant for con-
stant cross-section risers or downers and even, for their flow
* Tel.: +33-3-44-23-4434; faxi33-3-44-23-1980. development sections, as it has been recently illustrated by
E-mail addressyuri.molodtsof@utc.fr (Y. Molodtsof). Motte [9].
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Nomenclature

cross-sectional area of the riser{m
gas velocity cofluctuations tensor &)
gas-—solids interaction force (NAn
acceleration of gravity (mf3

local gas pressure

radial distance to riser centerline (m)
intergranular stress tensor (Pa)

gas velocity (m/s)

solids velocity (m/s)

axial coordinate (m)

<

x<Ccoy-"TQ@TE>>

Greek letters

o phase presence probability (-)

Bi;  solids velocity cofluctuations tensor $/&?)
¢s  solids axial mass flux (kg/fs)

p  phase density (kg/f)

o;j  solids stress tensor (Pa)

T;;  gas viscous stress tensor (Pa)

Subscripts and superscripts

D Dense Phase Flow Regime
f the fluid phase

i,j tensor notation

interval K

reference flow variables
the solids phase

the Transition Regime

*xa— 00X

critical conditions
unladen gas flow variables
the Similar Profiles Regime

= O

(overbar) indicates cross-sectional averages

technique. These Eulerian equations are labeled in terms of
local and instantaneoyshase mean variablegefined as the
probabilistic means (i.e., expected values) of the immediate
Eulerian variables of each phase. An equivalence theorem
enables the direct identification of each phase mean variable
with the corresponding physically measurable quantity.

For a gas—solids mixture, when all the particles making
up the solids exhibit the same density, the flow can be con-
sidered as a two-phase fldd/1] which is governed by two
Continuity Equations (one for each phase) and six Momen-
tum Equations. In the case of a fully developed flow of a
gas—solids suspension in a circular pipe, it can be shown,
with the help of the Continuity Equations, that the velocity
fields are strictly axial for each phal,11] In addition, all
the variables in the Momentum Equations, except pressure,
only depend upon the radial coordinateConsequently, for
the fluid phase, for instance, the axial projection of the Mo-
mentum Equation simplifies as follows:

1d op 1d
——(raspf Brx) = —afprg — af — — Fy + ——(ras trx)
r dr ox r dr

1)

The LHS of this equation contains the remainder of the in-
ertia forces, whereB,, denotes shear component of the ve-
locity cofluctuations tensor{pB;; identifies with Reynolds
turbulent stresses in one-phase fluid flow). The RHS ac-
counts for the external forces, respectively, gravity, pressure
forces, gas—solids interactioR,() and viscous stresses.{).
Finally, of denotes the local probability of presence of the
fluid.

The analogous equation for the solids, simplifies as fol-
lows:

1d
——(raspspPrx)

The analysis is based on an asymptotic approach of the” 3
B . . . D 1d

General equations governing the flow of gas—solids mixtures = —aspsg — as— + Fy + — —[r(asorx + srx)] (2
[10,11} following the method initiated in a previous paper 0x rdr
[10,12] Its main objective is to provide a rigorous theoretical Most of the terms in this equation are similar to correspond-
background to a series of experimental investigations, which ing ones inEq. (1) Two particularities, however, should be
already identified flow regimes and flow structure character- noted. The effect of average gas pressure on patrticles takes
istics, in order to be able to interpret and generalize exper-the particular form shown here, only in the case of a fully
imental findings. For this purpose, a general discussion of developed flow[10]. Besides, the last term, in the RHS of
these findings with the help of theoretical results will take Eg. (2) exhibits two different stress tensors;, accounts
place in the last section of the paper. for surface forces acting continuously in time and linked
by the fluid, while,s., generally known as the intergranu-
lar stress, contains the effect of direct contacts (here, mainly
collisions) with other surfaces, i.e., particles and walls.

In addition to the axial pressure gradient and the
gas—solids interaction force, these two equations are cou-
pled by the phases complementarity equation:

General probabilistic multiphase flow equatidi$,11] af +as=1 A3)
provide a rigorous basis for the analysis of gas—solids
flow. They have been derived from first principles, tak- whereas represents the local solids presence probability,
ing into account the intrinsic stochastic nature of the flow which can be identified with solids volumetric concentration
of multiphase mixtures, and using an ensemble averaging(i.e., solids volume fraction).

2. General analysis

2.1. General equations for fully developed flow
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Simplifications introduced in the General equations in or- to which, these variables can be considered as continuously
der to deriveEgs. (1) and (2pare only based on the fully differentiable functions of time and space coordinates, es-
developed flow hypothesis and, therefore, are completely pecially, in this case, with respect to the radial coordinate
rigorous. However, there is an obvious closure problem re- r. Assumption (a), together with the fully developed flow
lated with these equations. Indeed, these equations cannotequirement, limits the range of validity of the theory, typi-
be solved until additional equations are derived in order to cally, to CFB risers. Indeed, in the practical operating con-
expresB,x, Brx: Fx, Trx, 0rx ands,, in terms of basic vari- ditions of this process, average solids concentrations seldom
ables such as phases velocities and concentrations. Rigorexceed 10% in volume. Assumptions (b) and (c) general-
ously modeling so many terms to derive the required numberize an experimentally established fact, at least for variables
of closure equations will probably not be possible for sev- such as local particle mass fluxes and axial pressure gradi-
eral decades, despite numerous attempts which can alreadgnt. On the contrary, assumption (d) is a fully theoretical
be found in literature (e.d13,14). In order to avoid this hypothesis. It can only be supported by the fact that no con-
closure problem, solvinggs. (1)—(3will not be attempted trary experimental evidence has been found to date. Finally,
in this work. Rather, the previously developed asymptotic throughout this analysis, the superficial gas velocity is as-
approach[12] will be used to analyze the flow structure sumed to remain constant, as well as, the composition of the
problem. circulating solids; the only operating parameter to be varied

Finally, the analysis to be developed hereafter is an is the solids loading of the flow characterized by the average
asymptotic one, limited to the cases where the average solidssolids concentratiofs.
concentration remains low. This average concentration is Let us now consider an average concentration interval re-

defined as the cross-sectional averagef ferred to a¥K. Within this interval reference flow conditions
. 1 will be defined by an average concentrati@f. Provided
s = Z/A asdA 4) that, assumption (c) is valid over interil any generic fluid

phase variable;s s evaluated for an average concentration

Adding throughEgs. (1) and (2gliminates the gas-solids g, can be expressed using a Taylor series development such
interaction force-,. Then, usingeq. (3) one obtains as

1d ¥t = ()R + (@s — ad)yf +0@d) ()
—— [r(pras Brx + pssPrx)]
rar o 1d where the first term on the RHS represemis evaluated
= —(praf + psts)g — a_i + ;a[r(o{f Trx + 0sorx + Srx)] under reference flow conditions. The second term is_ the first
5) order term of the development; therefon}af which is a
( function of r depends on the superficial gas velocity, but
In addition, it can be showed th§t0] the axial pressure IS independent ofs. Finally, O(@3) represents second and
gradient is uniform throughout the suspension, i.e., it is higher order terms, which can be neglected according to
independent of botlx andr in fully developed flow. Inte-  assumption (a). Similarly, for any solids phase variable one

gratingEq. (5)over the cross-section leads to obtains
9 2 asys = (asys)® + (@s — ad) X + 0@? 8
_a_P — prg+ (ps — pf)g(xs— E(Olffrx + er)w (6) s¥s (asys) (as S)Ws ( s) ( )
* and especially, for local particle concentration
where the last term in the RHS is evaluated at the wall. _ _ _
as(r) = (@) + (@s — af) X (r) + 0@d) 9
2.2. The general asymptotic approach The corresponding development of the local probability of

presence of the fluids can be deduced frorgs. (9) and
The asymptotic approach is based on four assumptions: (3). In addition to the local phase presence probabilities and
generic phase variables, the Momentum Equations contain
three other terms: the gas—solids interaction force, the inter-
granular shear stress and the pressure gradient. These terms
can also be developed in Taylor series over the same average
concentration interval as

(a) In the studied flow regimes, the average solids volumet-
ric concentrations remain low enough such that, one can
consideras < 1.

(b) In this range, all phase mean variables epatinuous
functionsof the average concentration.

(c) In addition, within this range, at least limited intervals Fy = (F\)R + (@s — &}) FX + 0(a2) (10)
exist in which, all phase mean variables epatinuously

_ R, (=~ _=R\K -2
differentiable function®f the average concentration. Six = (80" + (& — &) + O(@5) (11)
(d) Local solids concentratioss(r) is a monotonically in- p R _ R K 5
creasing function of average concentratian 3 = (@7 + (@s—a5)GT + O(ag) 12)

Besides, there is an implicit assumption related with the In all these Taylor series developments, the coefficients of
phase mean variables in the General equations, accordinghe first order terms identified with K superscript, are
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independent ofts and, therefore, armvariant functions of 3. The Similar Profiles Regime

r (exceptGX which is a constant)ver the average concen-

tration interval K These functions depend, however, on the 3.1. Dilute phase flow

superficial gas velocity. Insofar as second and higher order

terms can be neglected according to assumption (a), they et us now consider the range of very low solids loadings.

represent the rate of variation of corresponding local vari- Starting with a dilute suspension and progressively reducing

ables with the solids loading of the suspension measured bysolids loading to zero such thag tends toward zero, while

the average particle concentratieg the superficial gas velocity is maintained constant, will lead
Let us now, substitute for these truncated developmentsto an unladen fluid flow. Indeed, as the loaals necessarily

into the Momentum Equations (1), (2) and (5); subtracting positive or zerogs — 0 will result in as(r)=0 throughout

through the same equations expressed for reference flowthe cross-section. Besides, according to assumption (b), all

conditions, then, neglecting second and higher order terms,|ocal fluid phase variables will tend toward their expressions

and finally, dividing through byas—af) lead, respectively,  for the unladen gas flow, while, solids phase variables will

to the following forms: identically, vanish.
14d Consequently, iﬁ§ = 0 is taken as the reference flow
__(rpf B = X prg — KGR + (@n)RGK conditions, one has
1d ()R = (aryn)® = v} (16)
—Fk4 = 4 (rrrx) (13) . .
(as¥s)” = (asys)” = 0 (17)
1d
=L o0sB) == psg + FH (G + (@"GE (as) = (29)°=0 (18)
1d Egs. (7)—(9will then, take the following form:
+FE+ 22 (o + K] g 9 (-Gl .
afys = Yf + asyi (19)
1d
~ g (P B + 5Bl asys = asys (20)
1d _ a5 fl
= —fKps— prg+ GK—i—;a[r(TrIi +of + 551 as(r) = asf™(r) (21)
(15) where the O superscript is used to identify the variables of

the unladen gas flow, and where the 1 superscript indicates

All the terms of these three equations are independe®d,of  the rate of variation functions associated with the local vari-
and both of three are valid throughout the average concentra-ables of the suspension, for this dilute phase flow. In these
tion range referred to &s. At the first glancekEgs. (13) and MacLaurin series developments, second and higher order
(14) depend on the reference flow conditions chosen within terms have been omitted according to assumption (a). The
the interval, throughof )R, (as)R and G)R. But if we change generic form ofeq. (19)applies to all fluid phase variables,
the value ofaR the changes undergone by these terms are and also to the pressure gradient, white, (20)describes
of the same relative order of magnitude as the terms alreadythe variations of all solids phase variables including the
neglected. Thus, they have to be considered as invariant ovegas—solids interaction forde, and the intergranular stress
interval K. ConsequentlyiEgs. (13)—(15pre intrinsic equa-  S., as both should vanish in unladen gas flow.
tions for the average concentration range referred ti;as Provided that an appropriate solids loading interval ex-
they govern the radial distribution of thate of variation ists, over which local phase variables remain continuously
functionsassociated with the local variables throughKut differentiable functions of average solids concentration,

In other words, insofar as all local variables are contin- Egs. (19)-(21)define a flow regime expected to occur
uously differentiable functions of average solids concentra- under dilute phase flow conditions. In additidags. (20)
tion throughout intervak, a unique set of rate of variation and (21)define the radial profiles of solids phase variables
functions governed b¥gs. (13)—(15)define the evolution  as self-similar. Therefore, this dilute phase flow regime
of local flow variables with solids loading, at a constant su- has been called th8imilar Profiles Regim¢10,12] The
perficial gas velocity, througho#t This is typically the kind radial profiles of solids phase variables should keep their
of situation allowing to refer to intervak as harboring a  self-similarity property regardless of the superficial gas ve-
consistenflow regime Therefore the asymptotic approach  locity. Nevertheless, the shape of the profiles, i.e., the rate
provides a criteriorto decide if any range of solids loading  of variation functions such ag!(r) and 1//§(r) or wfl(r) are
can be considered as a specific flow regime for a fully de- expected to change when the gas velocity is changed.
veloped gas—solids suspension. As the scope of this analysis The effective existence of this Similar Profiles Regime
is limited to fully developed suspension flow with moderate (SPR) has been confirmed by several experimental investiga-
solids concentration as required by assumption (a), the onlytions. This will be discussed in the last section of this paper.
criterion is the validity of assumption (c). However, given the limited number of reliable measuring
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techniques, comparison was mainly performed for the pres-  In order to examine the possibility of such an upper limit,
sure drop law, average solids velocity and particle mass flux let us now examine how local fluid phase variables are ex-
profiles. Let us explicit the corresponding laws predicted by pected to change witlocal particle concentration, in di-
this theory. lute phase flow. According tBq. (19) for very low particle

The general form of the variations of unit pressure drop loading, the fluid phase variables of the suspension depart
with average concentration, in the SPR, can be deduced fromweakly from their values in unladen gas flow; in addition,

Eqg. (12) comparison withEq. (21)suggests that the local perturba-

op o - 4 tion.of the unladen gas flow field igroportional to local
T (G)” + asG (22) particle concentration

1

where G)° stands for the pressure gradient of unladen gas oy — wfo = oesw—fl = asfﬁfl (27)
flow for the same superficial velocity. Now, if we consider f
local solids velocityEq. (20)applies withyrs = V. Thus, Now, let us consider the flow about a particle in such condi-
one obtains tions. As it is well known from one-phase fluid mechanics, it

1 23 significantly differs from “outer flow” only in a limited vol-
sV = asVy (23) ume, namely, the boundary layer and the wake. Outside this

where V2 is a function of radial coordinate and superficial Perturbated flow volume”, local variables are essentially

gas velocity, but is independent of average solids concentra-8dual to those of the “outer flow”. In the present case, the

tion. The average solids velocity is generally defined by axialoveloc_ity co_mponent, for instance, is essentially equal
to U;. Besides, in the “perturbated flow volume”, local ve-

asV = 1/ asV, dA (24) locity depends upon the slip velocity of the particle. Let
AlJa u, denote this local velocity, on the average. Therefore, the
ephase mean velocity (i.e., the expected valug)will be
a combination of these two contributions. In addition, ac-
cording to the similarity rules of one-phase fluid mechanics,
the “perturbated volume” is proportional to the volume of
the particle. Thereforay, will contribute toU, in a volume
fraction equal toKas), while the unperturbated flow veloc-
ity will contribute in the complementary volume {kws).
Thus, one has

o1
b=+ / petsVy dA (25) Uy = (1— kas)UC + kassity (28)
A

From an ensemble averaging point of viekyd) and (1—
kas) are the respective probabilities to find the local velocity
Ps(r) = &)sAl(r; U) (26) equal to, eitheu, or U)?. A similar expression can be found

for the velocity cofluctuations terf,, (as well as, for other
according to which, particle mass flux profiles should be fjyig phase variables); indeed, fif., denotes the average
self-similar. A1 (r; U) is a function of radial distance and  cofiuctuation in the “perturbated volume”, one has
superficial gas velocity, to be determined experimentally.

_ 0
Indeed, the analysis performed here can only show the Brx = (1 — kats) By + karsbr (29)
general properties of the laws governing the variations of \yhere BY, represents the turbulence of unladen gas flow.

flow variables with solids loading, but is unable to predict opyiously,Eqs. (28) and (2%re consistent with the general
the actual shape of the radial profiles, not even as a functionsoym (27). Nevertheless, these two expressions are valid,

In the SPR, it is then, equal to the cross-sectional averag
of V1. Given that the latter should be invariant when solids
loading changesverage solids velocity should remain con-
stantin the Similar Profiles Regime, and only depend on gas
velocity. Finally, the RHS oEq. (23)multiplied by ps rep-
resents the local net particle mass flux in the axial direction.
The average solids mass flux is defined by

Combining withEqg. (23)leads to

of gas velocity. if and only if kas < 1 — as, i.e., if the “perturbated flow
volumes” do not overlap.
3.2. The upper limit of the Similar Profiles Regime Consequently, insofar d@sgs. (28) and (29¢an be con-

sidered as the physical justification of the general forms (27)

Let us recall thaEgs. (19)—(21are the limiting forms of and (19), one should contemplate that, all these forms could
Taylor series developments, asymptotically validags— become invalid beyond a critical concentratief defined
0. Therefore, if the solids loading of the suspension, is fur- by
ther increased, the neglected second order terms are likely to(k Flhat =1 (30)
progressively change the slope of the curves describing the s
variations of local variables with average concentration. Ex- Indeed, as soon ag reaches this critical value, the rate of
cept, if there is an upper limit to the concentration interval variation of the fluid phase variables with local concentra-
over which local variables are continuously differentiable tion is expected to change. Therefore, evekdf (21)de-
functions ofas. scribing the relationship between local concentratigand
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average concentration, remains valid beyedidlocal fluid will still, be described byEgs. (28) and (29n the part of
phase variables are no longer continuously differentiable the cross-section whete(r) < o, while in the remaining
functions ofas over a range containings. Consequently, part, the magnitude of which will increase with, new
og determine the upper limit of the Similar Profiles Regime. local laws will apply. Let us, respectively, call “sub-critical

However, the mechanism identified as being responsibleflow region” and “super-critical flow region” these two
for this upper bound is cal one, andx{ is a critical value parts.
for local concentration. Wheas is progressively increased Let us denote:(r) the average concentration for which,
from zero, the local concentration will reach its critical value the local concentration at a given radial distanaeaches
o at a radial positiom* in the cross-section, where particle the critical valuexy. Thus,c(r) defines an implicit function
concentration is maximum in the Similar Profiles Regime. of r through the following equation:
According toEq. (21) this will occur for an average con- DNk
centrationa? such that as(ri €) = s (32)
of = &*fl(r*) (31) Given thatas is assumed to be a continuous function of av-

S S . . . .
erage concentration and a continuously differentiable func-

Therefore, in terms of average concentration, the Similar tion of radial distancec(r) would be a continuous function
Profiles Regime would occur in a range {f]. Besidesgg of r. Therefore, interval is a range of solids loading over
is determined by which is a characteristics of the relative which agradual transitionoccurs: the flow structure of the
flow about a particle. Thus, it mainly depends on fluid and Similar Profiles Regimeprogressively and continuously
particle properties. But as the shape of concentration profileschanges into that of dense phase flow, as overall solids
in the Similar Profile Regime is likely to depend on gas |oading is increased.
velocity, af is expected to be a function of superficial gas

velocity. 4.2. Flow structure

According to assumption (b, (r; &s) is a continuous
function of average concentration, but not necessardgra
tinuously differentiabldéunction of that variable all over in-
tervalT. Nevertheless, its derivative with respeci&taannot
_ - ) be discontinuous throughout the interval, otherwise, assump-

If the concentration profiles in the SPR were uniform on () cannot remain valid. Therefore, interabears only
throughout the cross-section, one would hage= og. In a limited number of discrete points of discontinuity for that
other words, the change froBgs. (28) and (290 another  gerivative. It is necessarily discontinuous fay = & and
set of laws of variation with local concentration, would occur 5 — a*. In addition, the mechanism of progressive substi-
simultaneously for the whole cross-section. However, con- ytjon described above, which closes up the local sub-critical

centration profiles are not expected to be uniform, even in fjow conditions when the “perturbated flow volumes” over-
the SPR, at least on the basis of the few available experimenap  suggests that such a discontinuity should also occur,
tal results. Thus, for thaveragecritical concentratioriy, at a given radial distance for as(r) = o, thus, foras
as(r) will be lower thaneg everywhere in the cross-section  _ (.

except at = r*. If the solids loading is gradually increased,  Therefore, let us assume that, the variations of local con-

as(r) will increase everywhere throughout the flow, accord- centration with average concentration, are governed by two

ing to assumption (d), and the local critical conditions will yifferent laws depending on whether local flow conditions
be reached and overstepped in an larger and larger part obyre sup-critical or super-critical:

the cross-section. Let™* denote the radial position where . o B
the local concentration will reach the critical valgatthe % (73 @) = &g + [@s — c(N] f~ (3 U) (33)
latest, i.e., wheixs = af*. Then, the average concentration _+ .-\ _ « = +
range f; a*] will corrsespond to the solids loading inter- o5 (ri@s) = o5 + [as =] /7 ) (34)
val through which local transition progressively takes place In these equations, which express truncated Taylor series
throughout the cross-section. This range will be called the developments, the second and higher order terms have been
transition range and the above interval referred td.as neglected in accordance with assumption (a). In addition, the
As showed above, the flow structure of the SPR cannot (—) superscript has been used for sub-critical flow variables
hold in this range; in addition, beyond the upper bound of while, the &) superscript identifies the super-critical flow
interval T, a new flow regime is expected to occur, which variables. Local concentration is expected to be a contin-
will be called below, the Dense Phase Flow Regime. Let us uously differentiable function of radial distance, regardless
now examine the expected properties of the flow field, in of overall or local flow conditions. Thereforg,” (r), f(r)
between, i.e. over intervdl. andc(r) should be alike. In addition, the radial derivative of
All along this average concentration range, the relation- «s(r) should remain continuous throughout intervakspe-
ship between local flow variables and local concentration, cially for as = ¢(r). According toEgs. (33) and (34)this

4. The Transition Regime

4.1. Gradual transition
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radial derivative is twofold: radial positions. These aré andr**. However, a possible
da= df- de discontinuity of the derivative at these points does not inval-
d—: = [y — C(V)]W - f- " (35) idate the previous conclusions. Indeed, the continuity of the

derivative is required for the use &fgs. (33)—(36)But for

r = r*, sub-critical flow conditions do not exist within the
range of the Transition Regime, as for the super-critical flow
conditions at- = r**, alike. Therefore, derivability at these
singular points is not required. Besides, if the existence of
other points of discontinuity is to be suspectgd,(r) and
=0 = (37) f*(r) are expected to be different at these points. Since,
these are isolated singular points, the necessary continuity
of local concentration, as a function of radial distance, will
impose the continuity of the rate of variation functions. In
other words, iff¥ denote such a radial distance, one should
have

as(r; as) = (as)™ + [as — &:]fT(” U) (38) f- (r#) =fr (r#) = fT(I”#) (43)

dad
dr

Thus, provided that(r) is continuously differentiable, the
continuity requirement for local critical conditions requires

dft d
= [as— c)] = — FF (36)

Consequently, comparison wilgs. (33) and (34indicates
that, the variations of local concentration with average con-
centration are, in fact, described bymiquelaw throughout
interval T:

A similar mathematical argument can be developed for any \hich implies that the general conclusion summarized by
other phase mean variable, eitlagt/s or asy's to show that  gq. (37)remains valid even for these singular points. The
its variations with average concentration, are governed by aconclusions derived in this section are, therefore, valid for
unique rate of variation function, eithes/ or v all over  the whole cross-section.

interval T: Consequently, as soon as the average concentration ex-
o . o e A . X
s = (rn)* + [as — aZ]yT (39) ceeds the critical valueg, the Similar Profiles Regime will
end, and the Transition Regime will take place. From a prac-
asls = (ase)* + [as — allyl (40) tical point of view, these two regimes will be different, if and

) ) -~ o only if, the rate of variation functions of the two regimes,
Again, there is a necessary condition for the validity of these ¢ gifferent. To ascertain this point, let us express the local
equations: the function(r) should be a continuously differ-  yitical concentration usingq. (38)

entiable function of the radial coordinate. . . I

Egs. (38)—(40)re of the same form as (7)—(9). Conse- % = (@9)" +[c(r) —ag]f" () (44)
quently, they define interval' = [a5; a5*] @s @ concen- o can pe obtained fronEq. (21) Combining these two
trat_lon mterv_al over which, _the variations of the local flpw equations leads to
variables, with solids loading, are governed by a unique i 1
set of asymptotic laws making up a consistent flow regime. /7 ) _ ¢1(,y = ¥~ C(r)Jj () (45)
As this is a range over which local critical transition grad- c(r) —ag
ually occurs throughout the cross-section, it will be called g nymerator of the fraction in the RHS of this equation,
the.TrgnS|t'|on Regimelt is characterized by affine laws of only vanishes for = r*. Therefore, f7 (r) and f1(r) are
variation (in continuity with those of the SPR) aff local different throughout the cross-section, except, perhaps at
variables with average concentration. _ r = r*. At this particular radial position, the denominator

Indeed, for the axial pressure gradient one obtains simultaneously vanishes; the two rate of variation functions,
ap (3,;)* - thus, can be different even iri.
——=—|—) +[as—a5]G (41)

ox ox
For the axial mass flux profiles, combiniriggs. (25) and 5. Dense Phase Flow Regime
(40) one can also find an affine law of variation:

_ % 13 g%1 AT Throughout the Similar Profiles Regime, solids phase

9s(r) = (@9" + [9s = $s]A7 (= 1) (42) variables are governed l5gs. (20) and (21)Consequently,
In addition, it can be easily shown that, in the Transition local solids velocity, for instance, remains constant, at a
Regime, local as well as, average solids velocities becomegiven radial position, and equal to the value it would assume
functions of average concentration, unlike the behavior ob- for an isolated particle fed into the unladen gas stream,

served in the SPR. regardless of solids concentration. Tre&ativeradial distri-
However, all these conclusions are valid onlyc({#) is bution of the particles, alike, remain unchanged throughout

a continuously differentiable function. In order to ascertain the regime. In other words, on the average, the flow field

this property, let us note once, that the derivativec6f) of the particles is determined by the unladen gas flow field,

cannot be discontinuous throughout the cross-section. It canwhile, overall particle loading, acts as a scale factor. Ac-
only exhibit a discontinuity at a limited number of discrete cording to this picture, one would expect, that the overall
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solids loading could be increased, without any change in Obviously, the DPR rate of variation functions identified
the properties of the particles flow field, as far asatura- with the D) superscript, will differ from those of the Tran-
tion would occur in terms of local particle concentration, sition Regime.
at least, at a particular radial position. It can be easily The search of the conditions under which the DPR is ex-
imagined that such a saturation would be the maximum pected to end up, is out of the scope of this paper. The only
concentration possible for the particles, i.e., for instance, observation, which can be inferred, is that if, with increasing
the packed bed or, dense phase fluidized bed concentrationsolids loading, the second and higher order terms become
We showed that, a saturation indeed occurs, which is notno longer negligibleEqgs. (46)—(50will represent the ini-
due, however, to particle packing limits but, to the effect of tial trends of variation in the DPR, i.e., the equation of the
the presence of the particles on gas flow field. The grad- tangent to the plot of the corresponding curve doe a%*.
ual substitution, proportional to local particle concentration,
of solids-dependent flow variables, for unladen flow vari-
ables, as described Hygs. (29) and (3Q)imposes its in- 6. Comparison with experimental results
trinsic limit: the disappearance of any trace of unladen gas
flow structure, at a given radial position, due to the over-  During the last two decades, a lot of experimental work
lapping of “perturbated flow volumes”. As soon as the con- has been devoted to investigating flow regime and flow struc-
ditions for such a saturation occur, at any radial position ture characteristics in vertical fully developed flow, espe-
in the cross-section, the relationship between local particle cially, in CFB risers. Their results will shortly be analyzed,
concentration and overall solids loading happens to change.here in order to be compared to our theoretical predictions.
The SPR ends up, to leave the place to the specific flow Through a careful series of experiments on dilute phase
structure of the Transition Regime. suspensions Muzyka et gl15,16] was the first author to
The saturation under consideration, however, is not a con-confirm that the pressure gradient of the suspension was, in-
centration which cannot be exceeded. It only results, in deed, systematically described By. (22) as predicted for
places where local saturation conditions are fulfilled, in the Similar Profiles Regime as can be seeRiq 1 His ex-
solids variables independentlottal unladen gas flow vari-  periments have been carried outin a 20 mm ID stainless steel
ables, but determined by a solids-dependent fluid flow struc- pipe, using two different particle size distributions of sand
ture. Throughout the Transition Regime, “saturated” and (172, 249.m) and glass beads (¢3n) suspended in atmo-
“unsaturated” flow conditions (which have been, respec- spheric air. His results show the rate of variation facgr
tively, termed as super-critical and sub-critical flow condi- as being a linear function of superficial gas velocity, as can
tions) coexist over the cross-section. The requirements ofbe predicted usin&q. (6)and modeling particle-wall colli-
this coexistence, shape the flow structure of the Transition sions. In addition, Muzyka showed that the average solids ve-
Regime. locity is independent of solids concentration, and, is a linear
Obviously, beyondx$*, the complete disappearance of function of superficial gas velocity in the 1.5-10 m/s range.
sub-critical flow conditions will require a new change in the The average slip velocity was found essentially equal to the
relationships between local variables and average concenterminal velocity of the average patrticle, for the three solids.
tration. Therefore, a new flow regime will take place, which  Analyzing their average solids flux vs. average solids
will extend as far as these relationships can be describedconcentration plots, Monceaux et §1.7,18] reported the

by functions continuously differentiable with respecitg systematic existence of an abrupt change in the slope of the
i.e., unless a new type of saturation occurs. Tentatively, this linear trends of variation, for different levels of superficial
regime will called theDense Phase Flow ReginiBPR). gas velocity (2—6 m/s), thus, suggesting a regime transi-

As far as the second and higher order terms can be ne-tion. Their experiments were carried out in a 144mm ID
glected, this regime can be characterized by truncated Taylorplexiglass CFB-riser column in which, §0n FCC-catalyst

series developments similar Exgs. (7)—(9) particles were suspended in atmospheric air. They observed
ot ot —twv D essentially self-similar particle mass flux profiles in the first
ot = (s rr)™ + [as — o™ ]Ys (46) regime (dilute phase flow) while, the profiles deformed with
ot r=  —xk1 D solids loading in the second regime, exhibiting a significant
asfs = (asy9)™ + [0 — a57]Ys (47 downflow near the wall.

. wk | =  =kx1 2D With the help of his experiments, performed in the same
as(r) = (@)™ + [ds = &5"1 £ U) (48) installation as Muzyka, using a 2{@n sand, Mok6,7,19]
and, in particular, for the unit pressure drop, and, the local 'éPorted three flow regimes occurring, at a constant superfi-
solids mass fluxes, respectively: C|.al gas velocny,_when_sohds loading is g_radually m_creased.

Fig. 2 shows forgs vs. as the characteristic broken line be-
ap ) havior predicted in present work, suggesting an identifica-
T (5) +las— a0 (49) " {ion of the three linear regression lines with the analyzed

o regimes. A similar trend of variation is also exhibited by
¢s(r) = (¢o)** + [ps — dE¥1 AP (r; U) (50) his pressure drop vsis data in agreement witkgs. (22),
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Fig. 1. Pressure drop in dilute phase flow of vertical gas—solids suspensions after MugykRegression lines confirm the linear trend of variation
with average concentratiais at constant gas velocity as predicted byEg. (22)

(41) and (49) In addition, the slip velocity remains invari- Working with the same installation as Monceaux et al.
ant and essentially equal to the terminal velocity of the av- [17,18], Bodelin [22—-24] showed that they missed the au-
erage particle, in the first regime identifiable with the SPR. thentic SPR which occur for §om FCC-catalyst particles
It substantially increases with concentration in the second, at average concentrations lower than about 0.2-0.4%. He
which probably corresponds to the Transition Regime, and, also investigated mass flux profiles for 19& sand and
essentially stabilizes in dense phase flow. FCC-catalyst/sand mixtures. A typical plot of the trend of
Ginestet et al[20,21]investigating pneumatic transportin  variation of local particle mass fluxes(r) for sand, with
a 31.8mm ID pipe, either vertical, or inclined, and plotting (ps@s) at a constant gas velocity is shownHig. 3. Regres-
their data in the same way, also reported the two first regimession lines are in agreement with the trend of variation pre-
with their characteristics derived here, for 18® sand and dicted byEqgs. (17) and (40)The same formal agreement
571um glass beads. The critical concentrations at which has been observed with mixtures of solids differing both by
transition occurs are lower for an inclined pipe. However, their densities and their size distributions.
with 2—-3 mm coleseed, the abrupt changes of slope are no The same flow regimes, have been observed by Fabre
longer obvious; rather, a progressive sharpening of the trendet al.[25] in a 08 m x 1.2 m CFB-riser column operated us-
of variation is observed, e.g., i@is VS. ¢s plots. This is ing 260um sand particles. These authors report, however, a
probably due to the second and higher order terms, which fourth linear portion in the broken line plots evoked above.
could become non-negligible before the occurrence of the This can be interpreted as the effect of the rectangular shape
critical conditions required for the regime transition. of the cross-section of the column. Indeed, as it is generally
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Fig. 2. Variations of average solids flygx with average concentratiai at constant velocitiet), after Mok[7]. Regression lines exhibit the typical broken
line behavior predicted in present work allowing flow regime identification. Dashed lines indicate the approximate bounds of the Transition Regime (T
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Fig. 3. Trend of variation of local particle mass fluxgsr) measured at different relative radial positiarR, with average mass concentratiopas),
after Bodelin[22]. Solids: 198.m sand;U = 4.4 m/s. The dashed line indicates the onset of the Transition Regime (TR)dor= 5.6 kg/m°.

believed, the local concentration is expected to be maxi- regimes for particles mixes differing either by their size
mum near the wall. Therefore, local transition should firstly distributions or by their densities. An illustration is shown
occur near the wall, and then, progressively move toward in Fig. 4 The three regimes can be clearly identified com-
the centerline. This progression remains axisymmetrical paring the trends of variation with present predictions. The
in a circular cross-section column, but local transition can same regimes always occur in the same order. Nevertheless,
reach the center, faster, along the short axis, than alongthe overall critical conditionst} and «*, depend on the
the longer axis of a rectangular cross-section. Then, in composition of the mixture: the finer the particles, the lower
the remaining sub-critical flow region, local transition will the critical concentrations. The effect of particle density,
progress both from and toward the centerline. In addition, however, is less obvious.
this argument could explain, why the average concentration Besides, the asymptotic analysis developed here, has
sharply increases, in this range, for slight increments of been extended to temperature fields, in the Similar Pro-
average solids flux. files Regime, by Molodtsof and Muzyki7]. Then, an
Finally, Motte et al.[26] with the same installation as explicit equation has been derived, for the variations of
Bodelin, confirmed the existence of the predicted flow the wall-to-suspension heat transfer coefficient with solids
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Fig. 4. Trend of variation of local particle mass fluxes(r) measured at different relative radial position®, with average mass concentration
(1011 + p2t2), after Motte[9]. Solids: a mix of 30% FCC-catalyst (1200 kgini7Opm) and 70% iron ore (5200kgfn83um); U = 4.4m/s. The
dashed lines indicate the bounds of the Transition Regime (TR).
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loading, which predicts all previously observed trends, and, [10] Y. Molodtsof, Equations générales probabilistes des écoulements
which has been found in excellent agreement with the heat  polyphasiques et applications aux mélanges gaz-solides, These d'Etat,
transfer data reported by MuzyKes]. In addition, Bentahar Universite de Technologie de Compiégne, France, 1985.

. . [11] Y. Molodtsof, D.W. Muzyka, General probabilistic multiphase flow
etal. [28] showed that, the sudden regime transition occur- equations for analyzing gas—solids mixtures, Int. J. Eng. Fluid Mech.

ring for @s = a3 results in an abrupt change in the constants 2 (1989) 1-24.

of the heat transfer coefficient equation. [12] Y. Molodtsof, D.W. Muzyka, A similar profile regime in the vertical
fully developed flow of gas—solids suspensions, Int. J. Multiphase
Flow 17 (1991) 573-583.

[13] S.B. Savage, D.J. Jeffy, J. Fluid Mech. 110 (1980) 223-256.

[14] O. Simonin, P.L. Viollet, in: G.F. Hewitt, F. Mayinger, J.R. Riznic
(Eds.), Phase—Interface Phenomena in Multiphase Flow, Hemisphere,
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. . . . pneumatic transport, in: Proceedings of the 33rd Canadian Society
sis the formal relationship between local flow variables and Chemical Engineering Conference. Toronto, Canada, October 3-5,

overall solids loading has been deduced. The examination of  1gg3.
flow structure properties allowed the identification of three [16] D.w. Muzyka, The use of probabilistic multiphase flow equations

7. Conclusions

distinct flow regimes. The mechanism governing the hydro- in the study of the hydrodynamics and heat transfer in gas—solids

dynamic effect of local particle concentration, on local fluid Z“Stpeggo”j' Pfggg Thesis, University of Western Ontario, London,
. . . nt., Canaada, .

phase variables, eXpl.ams the regime change;, a_s well a$ th 7] L. Monceaux, M. Azzi, Y. Molodtsof, J.F. Large, Overall and

flow structure properties. The formal and qualitative predic- local characterization of flow regimes in a circulating fluidized

tions of this theoretical approach have been shown to be  bed, in: P. Basu (Ed.), Circulating Fluidized Bed Technology, 1986,

in excellent agreement with existing experimental results. pp. 185-191.

These experimental data were obtained for particle diame-[18] L. Monceaux, M. Azzi, Y. Molodtsof, J.F. Large, Particle mass flux
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ters ranging from 4qm to 1 mm, different solids densities, bed unit, in: Estergaard and Scerensen (Eds.), Fluidization V, 1986,

and even, for particle mixes, in risers the cross-sectional  ,, 337_44.
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